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An iterative and nonlinear procedure based on Renormalization group ideas is investigated 
for static screened Coulomb potentials through successive inclusion of excited 2-body orbitals. 
The key quantities are dielectric constants for every excited state, built into a hierarchy of 
nonlinear differential equations. Different numerical approaches to the Schrijdinger problem 
are contrasted. They are implemented through the analytic solutions of the given HULTHEN 
potential. As a result, one observes a systematic shallowing of the pair interaction altogether 
with a blue shift of the bound-bound transitions. 0 1988 Academnc Press, Inc. 

I. INTRODUCTION 

In several basic problems connected with pressure ionization and line broadening 
in strongly coupled plasma [ 11, one has to consider strongly overlapping electron- 
ion orbitals for the statically screened and 2-body interaction 

e -r/D 

-7 
r (1) 

with the Debye screening length 

kJ 112 D= 
47ce2(n,+ Z2n,+ (Z- 1)2n,,) ’ (2) 

np = free electrons density, with n, = density of fully stripped ions with charge 2, 
and n, = density of hydrogenic ions with charge Z - 1. 
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Then, through powerful iterative schemes [2] afforded by the recently developed 
Renormalization-group methods, one can account for these messy entanglements by 
a systematic embedding of closed and excited orbitals pertaining to the potential 
(1). Thus, one has to consider a two-body Schrddinger problem solved numerically 
at every inclusion of a given excited orbital by the next excited one, and so on, 
up to the ionization limit which remains undisturbed throughout that process. 
The eigenquantities pertaining to the enclosed pair build up a smoothly space- 
varying dielectric function providing a kind of line screening to interaction (I), thus 
extended to 

e - r/D 

A given excited orbital (n, I) labelled with usual hydrogenic quantum numbers n 
and I will thus experience a renormalized interaction (3) in lieu of the standard 
expression (1). The r-dependent dielectric function c(r) accounts for the enclosed 
dipoles arising from fast electrons orbiting on lower excited states with n’ 6 n, I’ < I. 
These latter belong to less excited electron-ion pairs. 

Within this context, the main goal of the present work is to emphasize out the 
typical numerical technicalities involved with the implementation of the above 
renormalization group approach to pressure-induced shifts of bound levels in dense 
and hot plasmas. As far as we know, this is the first application of renormalization 
group techniques to atomic physics problems in dense plasmas. 

II. STATEMENT OF THE PROBLEM AND FORMAL SOLUTION 

The iterated embedding process is based on the crucial remark that radial 
wavefunctions R,,(r) for (n, 1) states close to their ionization limit [9] can exhibit 
enormously enhanced spatial spreading, as compared to their nearly coulombic 
homologue (D --f co). 

The ionization limit of a Debye orbital is defined by the value D,(n, I) of the 
screening length which makes bound states (n, I) disappear into the continuum. 

At this juncture, the salient is that for a D just above D,(n, I), R,,(r) displays 
a nearly horizontal r-derivative dR,,/dr N 0 for r >a, and also experiences a 
considerable delocalization by overlapping other wave functions pertaining to other 
ions with less excited electron-ion orbitals and smaller (n, I) values. 

This crucial observation paves the way to a systematics of successive inclusions of 
lower excited orbitals within more excited ones. In the present approach, level 
excitations by collisions with plasma particles are already accounted for in Debye 
orbitals, and they are not expected to alter bound state trajectories any further. 

In order to focus attention on dipole inclusions only, one has to consider the 
obvious monopole interactions (Coulomb repulsion) between ions as exactly 
balanced by a background of free electrons. 
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The formal procedure detailed elsewhere [ 1, 23 culminates into a succession of 
interrelated nonlinear differential equations for Y,,(r) = fle%, l(r). e denotes the 
electric charge; fi = (k, T) PI is the usual inverse thermal energy expressed in terms 
of the Boltzmann constant and the plasma temperature. 

The key quantities E,[(T) are then determined in a step-by-step procedure out of 
the eigenquantities (E,9,9, R,,.(r)) pertaining to the lower enclosed dipole with 
quantum numbers (n’, 1’). The above-referenced hierarchy of nonlinear equations 
thus reads 

where 

dy,(r) = -$7cC/3e2r4yi(r) C (21’ + 1) exp( -BZ!$,.) R;.,,(r) dr, 
n’<n 
/‘<I 

(4) 

C = fn,2(2nfi2/m,k, T)3/2 es’ 

depends on np, free electron number density in plasma, and Z, ionization potential 
of a bound electron-ion pair in ground state. C expresses the SAHA equilibrium 
between free charges and bound excited states. 

III. NUMERICAL PROCEDURE 

The actual specificity of the renormalization group approach to pressure-induced 
shifts of bound levels in strongly coupled plasmas lies in the adequate combination 
of numerical techniques required to solve the nonlinear hierarchy (4) explained in 
more detail as 

dy2,00= 
dr 

dY2,lo= -c~r’y:,(r)[e-“~~~X:,(r) + 3 eps”~&(r)] ... 
(4’) 

dr 

with yLo(r) = 1, expressing the ground state invariance throughout the whole renor- 
malization procedure, which depends now entirely on the radial wave function 
R,,(r) of the Schrodinger problem with the interaction ZepriD/c(r). 

We found it especially convenient to solve numerically the nonlinear differential 
equations through the socalled RKV8 (Runge-Kutta of order 8) method developed 
by Werner [3]. 

That method, in contradistinction to the more standard version [4] of the 
Runge-Kutta algorithm is also able to treat accurately the case of exact 
quadratures. 
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Such capabilities are obviously required to process efficiently the classical limit 
(I= 0 states) of Eqs. (4), i.e. (n, = average dipole density) 

& -= -~nonp2r4exp[(y/r)(e~~D-e-‘“)1, 
dr 

where y’ + 0 at the origin while y 2: (l/5 Cr5 + const))’ with C= 16/3nn, at 
infinity. 

The Debye interaction (1) has been corrected for diffraction effects at r = 0. These 
fi # 0 corrections thus provide a short-range regularization for the exponent in the 
r.h.s. of Eq. (5). 

The merits of Werner’s algorithm [3] are clearly appreciated when one recalls 
that an S-stage [4] R - K formula is a scheme for calculating y, from y, _, using S 
function evaluations: 

k, =f(xk-17 Yk-,I, 
i-l 

(64 

ki=f(xk-l +aihk, Y&--l +hk 1 b,kj), 
.f= 1 

i = 2, . . . . S, (6b) 

Yk=Yk-lfhk 2 Ciki, 
,=I 

where y(xk; xk- ,) iS the SOhtiOn Of the lOCal initial Vahe problem y’(t) =f(t, y(t)) 
and y(xk _ i) while hk = xk - xk _, is the stepsize for step k. 

The constants ai, b,, and ci define the method. They are tabulated in Werner’s 
paper [3]. The method is of order p if p is the largest integer such that 

Tk(hk)= [vdxk-l, yk-I)-Ykl&‘, 

= O(h,p) (7) 

for any p times differentiable function j(x, y). 
More standard RK algorithms [43 provide for cases that reduce to quadratures 

(or others partially of this type as Eq. (5)) error estimates which are identically 
zero, and hence these estimates turn unreliable. Werner methods [3] are of 
arbitrarily high orders of accuracy. They provide matched results of successive 
order p and p + 1 for which the total number of stage s(p) remains reasonably 
small. 

A pair of matched methods is denoted as an (g(p), p( p + l))-procedure. 

IV. NUMEROV VERSUS TRIDG 

We found it convenient, for the purpose of numerical accuracy, nodes counting, 
and computing time saving, to work out the relevant eigenquantities from two 
related codes: TRIDG [S] and NUMEROV [6]. 
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In the two methods R,,(r) is computed at N+ 2 equidistant points within interval 
[Ro,R,+,]. A given Ri is defined by R,=R,,+ih, where h=R,+,/N+l and 
R,=O. 

The standard notations 

d’P(R) 
Pi = P(R,), Vi = V( RJ, PI’ = dr2 

R, 

allow us to rewrite (P(r) = R,,(r)) 

as 

The expansion 

i 
-$+I?- V(r) 1 P(r)=O, 

l(l+ 1) 
V(r)= -4eeer/D+7, 

Pj= [If,-E]P,. 

P(Ri+h)=P(Ri)+hPi+gP:+--, (11) 

(8) 

(9) 

(10) 

yields the usual finite difference approximation 

h*PI’ = Pi+ 1 + Pip 1 -2P,, (12) 

where (h4/12)Pi4) has been neglected out, which characterizes TRIDG [4]. 
For NUMEROV [6], one makes use of 

h2PI’= Yi+I+ Yip,-2Y, 

(13) 

with first neglected term (H6/240)Pi6). 
The boundary conditions are taken as 

TRIDG 
P( R,) = 0 
P( RN) = 0 

NUMEROV approximate IimO R,,(r) 

lim Mr), 
r-tm 
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P(r) is propagated simultaneously inward and outward from R, and Ro. Matching 
is achieved at R = R, where one imposes P, = 1. 

Normalization results from 

(14) 

R, is determined, in both methods, as a classical turning point fulfilling 
V(R,) = E’, an a priori energy estimate. 

According to WKB theory, the wave function does no longer oscillate beyond 
R,. Therefore, counting the number of nodes in the [R,, R,,,] interval allows an 
easy check of the level labelling. Also, the choice R, = lOR, is sufficient to secure a 
nearly complete damping of P(r) at the end of a range with a reasonable extension 
and constant mesh. 

It is also important to notice that the approximate P(R) required to implement 
NUMEROV as well as the initial guess E’ are deduced from the corresponding 
eigenquantities for the Hulthen potential [7, 81 

e2 aeCar - 
E(r) (1 - epzr)’ 

azD-1 

conveniently analyzed under the form (6 = cla,,) 

amenable, up to a certain extent, to an exact analytic treatment. 
In this way, one easily obtains a good start for the Debye eigenquantities. 

(A) TRIDG 

Combining Eqs. (10) and (12) one has to solve 

cp If1 -2-h’&] Pi+ PipI = -h’EP,, (15) 

where PO = 0 and P,, , = 0, other P’s are deduced from 

i 

-[2+hVJ 1 

I..... 
. . 

0 
v 
A 

PI 
; 

P, 

P 
1 i PI = -h2E ; PA 1 (16) i 

diagonalized through the Rutishauser [lo] method, with eigenvalues appearing in 
order of increasing modulus, which allows us to restrict our focus to a few of them. 
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Eigenvectors are worked out through a method designed by two of us (O.A. and 
R.L.) for any tridiagonal matrix with the lower diagonal containing only unit 
entries. From (i = any eigenvalue) 

one gets 

al-A b, 0 0 ... 

1 a2 - 1 6, 0 ... 

0 1 a,--2 b, ... 

0 aN- 

Pl 
)i:) 

. = 0, 
I. PN 

(17) 

pi=aipi+, with cli= 
-bi 

(a,-A)+ai-1’ 
(18) 

First Eq. ( 18) yields a, = -b, /(a, - A); all the other a, follow by induction for 
i E [ 1, M]. Inward propagation gives 

M-l 

P;=UiP, with ori== 1 aj, 
j=i 

putting p,,,, = 1 determines Pi, in [ 1, M]. 
The P(r) nodes are thus counted by the number of c(,. < 0. 
For Pi with i E [M, N] outward propagation gives 

P,=y,P, with 9,=(ai-l-l)yi-l+Y;-2 
I 

ebi-1 ’ 
(19) 

where the process is initialized through 

Y 
a,-A+aa,-, (a M+l-~)YM+l+l 

M+l= 
-b, 

Y  Mt2= -b Mtl 

There are n - I oscillations of P(R) within [0, RM]. Taking 40 points/oscillation, 
we are led to work with M = 40 (n - 1) and N= lOM, which allowed us to retrieve 
Hulthen wave functions with a 10h3 accuracy. 

(B) NUMEROV 

From Eqs. (10) and (13’) one derives 

-h-2Yip,+aiYi-h-2YitI=0, 

with ai=2h-*+(Vi-E)[l-((h2/12)(Vi-E)]-’. Setting 

Y,=O Y,z Y,- 1 

(20) 
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one gets the matricial equality 

MY=0 

and 

v-h-2 0 .__ 0’ 

-2 a2 0 . . . 0 

-he2 a3 O... 0 

0 
0 0 . -he2 a, 

(21) 

Solutions are propagated from both ends towards R,. 
Starting with a Hulthenlike trial eigenenergy E = E - dE, one gets 

f’t&) F(E) = F(E) - dEF’(&) + dE= --, 
F’(E) 

(22) 

where F(E)= -h-2Y,,,-l+aMYM-hh2YM+1 is identically zero when dE = 0. 
From Eq. (21), one obtains 

F’(E)= 2 Y$ 
1=1 

(23) 

where (8a$&) = - [ 1 - (h2/12)( Vi - E)] -’ --) Yf(aaJ&) = Pf and finally 

dE=[h-*(-YM-,+2YM-Y,+,)+(&,-c)P,,,] 
i 

f (-P:). 
i=l 

NUMEROV thus allows for a 1O-6 accuracy on eigenvalues. 

V. RESULTS AND DISCUSSION 

In Fig. 1 one observes the inverse dielectric function Y,,/(r) = .&l(r) with averaged 
out I dependence, for 1 d 2~ 6 and different (D, A,) values. A, is the electron 
plasma parameter (/I = (k, T)-‘) 

2.43 x 10-4n,(cm-3)1/2 
T( “K)“* (24) 
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FIG. 1. Y,,,(r) = l/e,,(r) as a function of ionic radii a,/Z for 1~ Z < 6 and various plasma conditions. 
(a) D = SadZ, A, = 0.4. (b) D = lSa,,/Z, A, = 0.7. 
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in terms of the electron screening length D,, obtained by putting n,= n,,= 0 in 
Eq. (2). 

Larger D allows for more renormalized bound states, within the Debye (s(r) = 1) 
spectrum, left unchanged through the present procedure. The embedding process 
does not modify the ionization limit. It can then be considered as a very soft effect, 
which does not participate to the well-known and first-order orbital overlap leading 
to pressure ionization. Y,,(r) essentially acts as a prefactor within a generalized 
Debyelike interaction. In agreement with Eqs. (4k(4’), Y,,,(r) goes ultimately down 
to zero, at a .3/a,, distance, located beyond the abscissa in Fig. 1. 

In this work, we restrict our focus to small Z, because in the opposite Z -+ cc 
limit, Debyelike wave functions become too hydrogenic, and do not exhibit any 
sensitive delocalization effect. 

According to Iafrate and Mendelsohn [ 1 l] pseudo-analytic estimates, 

R,,(r) N Czscr) mto a,(r) Z-“, Z--t 02 

R,,-,(r)-rn-’ e-(Z’l”)+@(r) f(n,D, r) z 

(25) 

(257 

The nucleus has turned too attractive in this limit. The resulting R,,(r) gets 
shrinked on it, and the potentiality of successive embeddings of excited orbitals is 
then gradually lost as Z increases. On the other hand, one might argue that non- 
hydrogenic orbitals behave differently in the same Z + co limit. We are currently 
exploring a Thomas-Fermilike modelization of the electron-ion interaction under 
the form [12] 

Vr)=f [W(r)-21, (26) 

where N = number of bound electrons - 1, 

y(r) =$+, 0.5<% 1.3 
a0 

A more global feeling about the whole process is afforded by a three dimensional 
plot (Fig. 2) of the wavelength relative shifts -AA/l as a function of Z and A,. 

Blue relative shifts > 10e3 are obtained with respect to the Debye ones. They are 
distinctly larger than those usually observed in weakly coupled plasma (A, < 0.1). 
These latter are triggered by other temperature-dependent mechanisms. 
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FIG. 2. Relative wavelength shifts with respect to the Debye ones (e(r) = 1) for various conditions as 
a function of Z and A,. (a) Ly, and D = 5adZ. (b) Ly, and D = 7a,,/Z. 

The present Ly, and Lyp shifts steadily increase with 2 in the hydrogenic 
sequence, and also with /i,, up to the optimum A, for which the last bound state 
desappears into the continuum. 

These negative shifts, with respect to the usual unrenormalized Debye (E(T) G 1) 
transitions, act to reduce the overall Debye red shift. An effect increasing with 2 
and /1,, which thus contributes to reducing the Debye red shifts usually recognized 
as too large. 

Finally, we have to comment on the use of a pure electron plasma parameter /i, 
(Eq. (24)) in lieu of the full LI = fie’ D-l. 

A, enhances -AA/l. Also, in many practical cases, we are likely to handle 
situations with T, > Ti, where electrons display more capabilities [ 131 for long 
range screening than those expected from far distant ions, not involved in the 
present renormalizing procedure. 

To summarize our findings, we started with the observation that the radial wave 
function of a given Debye bound state, close to its ionization limit (D - D,(n, I)) 
extends over many interionic distances. We worked out iterative embeddings of 
orbitals with increasing excitation, by using a three dimensional quantum- 
mechanical extension of the two dimensional KT classical procedure [Z]. As a 
result, we got blue pressure-induced shifts with respect to the usual Debye ones for 
hydrogenic ions in strongly coupled plasmas. 
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